If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+3x-24=0
a = 6; b = 3; c = -24;
Δ = b2-4ac
Δ = 32-4·6·(-24)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{65}}{2*6}=\frac{-3-3\sqrt{65}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{65}}{2*6}=\frac{-3+3\sqrt{65}}{12} $
| 172=4(4-8n)-7n | | 4x-1=-3;x | | m/5-18=2 | | 9n-6n=24 | | 8(h-1)=6h42h | | -17=7+6k+6 | | 4x-1=-3;x= | | -7=r+8-4r | | (10x-61)+(x+10)=189 | | 39.58=8g+3.62 | | 12x+12=14x+10 | | 5x-(3^2)=22 | | 6x^2+3x=24 | | 4x+40(3x)=360 | | 4-w=3;w= | | 3641=x-1952 | | 11=-4+2x+14-6x | | 2n-1+4=-9 | | 6+x=10x+6 | | x/10-15=-5 | | 2w+14+2w=114 | | 207+x=431 | | 9x-5x+4=x-2+6 | | 2+6b=5b-5 | | -7+7a+8+2a=1-4a+8a | | 2(a-5)=a-7 | | Z=16-12a | | 6x²+3x=24 | | x-0.40x=342 | | 16x+11=13x+2x+19 | | 7=3x-1+2 | | -3x+x=5-2x-x |